@@ -1,3 +1,5 @@
+-- Slide 41
+
import Data.List
sweep::(String -> [String]) -> String -> String -> [String]
+-- Slide 23
data Point = Point Float Float
data Shape = Singularity Point | Circle Float Point | Square Point Point
+-- Slide 16
r n = rconcat n 0
rconcat inv outv =
+-- Slide 29
data List = Ground | Leaf Integer List
hyperSum xs = case xs of
+-- Slide 32
-- Reverse list order
myexchanger xs zs = case xs of
[] -> zs
+-- Slide 22
myAnd b1 b2 =
case (b1, b2) of
(True, True) -> True
+-- Slide 37
myflip::(a -> a -> b) -> a -> a -> b
myflip f a1 a2 = f a2 a1
@@ -1,3 +1,4 @@
+-- Slide 15
e1 x n = case n of
0 -> 1
_ -> x * e1 x (n - 1)
+-- Slide 28
data Nat = Zero | Succ Nat deriving Show
intValOf thisNat = case thisNat of
@@ -1,4 +1,4 @@
+-- Exercice from slide 42
dividers n = [k | k <- takeWhile (\k -> k * k <= n) primeinf, rem n k == 0]
dividersf n = filter (\k -> rem n k == 0) [2..(n-1)]
data BinaryTree = Leaf | Node Integer BinaryTree BinaryTree
height bigTree = case bigTree of
+-- Slide 31
square n = [(x, x * x) | x <- [1..n], x * x > 10]
tripy n = [(a, b, c) | a <- [0..(div n 3)], b <- [(a + 1)..(div n 2)], c <- [(b + 1)..n], a^2 + b^2 == c^2, a + b + c == n]