浏览代码

Add a comment with slide number on the first line

DricomDragon 5 年之前
父节点
当前提交
f3c9e4600a
共有 12 个文件被更改,包括 22 次插入0 次删除
  1. 2 0
      anagram.hs
  2. 2 0
      geometry.hs
  3. 2 0
      hpal.hs
  4. 2 0
      list.hs
  5. 2 0
      listfct.hs
  6. 2 0
      logic.hs
  7. 2 0
      myflip.hs
  8. 1 0
      mypower.hs
  9. 2 0
      peano.hs
  10. 1 0
      prime.hs
  11. 2 0
      tree.hs
  12. 2 0
      tripy.hs

+ 2 - 0
anagram.hs

@@ -1,3 +1,5 @@
+-- Slide 41
+
 import Data.List
 
 sweep::(String -> [String]) -> String -> String -> [String]

+ 2 - 0
geometry.hs

@@ -1,3 +1,5 @@
+-- Slide 23
+
 data Point = Point Float Float
 
 data Shape = Singularity Point | Circle Float Point | Square Point Point

+ 2 - 0
hpal.hs

@@ -1,3 +1,5 @@
+-- Slide 16
+
 r n = rconcat n 0
 
 rconcat inv outv  =

+ 2 - 0
list.hs

@@ -1,3 +1,5 @@
+-- Slide 29
+
 data List = Ground | Leaf Integer List
 
 hyperSum xs = case xs of

+ 2 - 0
listfct.hs

@@ -1,3 +1,5 @@
+-- Slide 32
+
 -- Reverse list order
 myexchanger xs zs = case xs of
 	[] -> zs

+ 2 - 0
logic.hs

@@ -1,3 +1,5 @@
+-- Slide 22
+
 myAnd b1 b2 = 
 	case (b1, b2) of
 	(True, True) -> True

+ 2 - 0
myflip.hs

@@ -1,3 +1,5 @@
+-- Slide 37
+
 myflip::(a -> a -> b) -> a -> a -> b
 
 myflip f a1 a2 = f a2 a1

+ 1 - 0
mypower.hs

@@ -1,3 +1,4 @@
+-- Slide 15
 e1 x n = case n of
 	0 -> 1
 	_ -> x * e1 x (n - 1)

+ 2 - 0
peano.hs

@@ -1,3 +1,5 @@
+-- Slide 28
+
 data Nat = Zero | Succ Nat deriving Show
 
 intValOf thisNat = case thisNat of

+ 1 - 0
prime.hs

@@ -1,4 +1,4 @@
+-- Exercice from slide 42
 
 dividers n = [k | k <- takeWhile (\k -> k * k <= n) primeinf, rem n k == 0]
 dividersf n = filter (\k -> rem n k == 0) [2..(n-1)]

+ 2 - 0
tree.hs

@@ -1,3 +1,5 @@
+-- Slide 29
+
 data BinaryTree = Leaf | Node Integer BinaryTree BinaryTree
 
 height bigTree = case bigTree of

+ 2 - 0
tripy.hs

@@ -1,3 +1,5 @@
+-- Slide 31
+
 square n = [(x, x * x) | x <- [1..n], x * x > 10]
 
 tripy n = [(a, b, c) | a <- [0..(div n 3)], b <- [(a + 1)..(div n 2)], c <- [(b + 1)..n], a^2 + b^2 == c^2, a + b + c == n]