|
@@ -25,14 +25,14 @@ def train(inputNetwork, learnRate, epochs, batchSize = 10):
|
|
|
w1 = net.layer1 # reference
|
|
|
b1 = np.stack([net.bias1] * batchSize).transpose() # stack
|
|
|
|
|
|
- z1 = np.empty(net.hiddenLength, batchSize)
|
|
|
- a1 = np.empty(net.hiddenLength, batchSize)
|
|
|
+ z1 = np.empty((net.hiddenLength, batchSize))
|
|
|
+ a1 = np.empty((net.hiddenLength, batchSize))
|
|
|
|
|
|
w2 = net.layer2 # reference
|
|
|
b2 = np.stack([net.bias2] * batchSize).transpose() # stack
|
|
|
|
|
|
- z2 = np.empty(net.outputLength, batchSize)
|
|
|
- a2 = np.empty(net.outputLength, batchSize)
|
|
|
+ z2 = np.empty((net.outputLength, batchSize))
|
|
|
+ a2 = np.empty((net.outputLength, batchSize))
|
|
|
|
|
|
y = np.empty((net.outputLength, batchSize))
|
|
|
|