|
@@ -1,6 +1,19 @@
|
|
|
# Generate neural network
|
|
|
|
|
|
from lab import neural
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+# Random generators
|
|
|
+def uniform(layer):
|
|
|
+ # TODO
|
|
|
+ return layer
|
|
|
+
|
|
|
+def gaussUnitDev(layer):
|
|
|
+ return np.random.normal(size = layer.shape)
|
|
|
+
|
|
|
+def gaussAdaptedDev():
|
|
|
+ # TODO
|
|
|
+ return layer
|
|
|
|
|
|
# Network weight initialization
|
|
|
def generate(activation, derivative, weightGenerator = None):
|
|
@@ -11,7 +24,7 @@ def generate(activation, derivative, weightGenerator = None):
|
|
|
net = neural.Network(activation, derivative)
|
|
|
|
|
|
if (weightGenerator is not None):
|
|
|
- net.layer1 = weightGenerator(size = net.layer1.shape)
|
|
|
- net.layer2 = weightGenerator(size = net.layer2.shape)
|
|
|
+ net.layer1 = weightGenerator(net.layer1)
|
|
|
+ net.layer2 = weightGenerator(net.layer2)
|
|
|
|
|
|
return net
|