# Improve performance of neural network import numpy as np from lab import neural, io_mnist from copy import copy def train(inputNetwork, learnRate, epochs, batchSize = 10): """ Create an improved network inputNetwork : the network to be trained epochs : the number of iterations return : a trained copy with improved performance """ net = copy(inputNetwork) np_images, np_expected = io_mnist.load_training_samples() nbSamples = np_images.shape[1] # Prepare variables a0 = np.empty((net.inputLength, batchSize)) w1 = net.layer1 # reference b1 = np.stack([net.bias1] * batchSize).transpose() # stack z1 = np.empty((net.hiddenLength, batchSize)) a1 = np.empty((net.hiddenLength, batchSize)) w2 = net.layer2 # reference b2 = np.stack([net.bias2] * batchSize).transpose() # stack z2 = np.empty((net.outputLength, batchSize)) a2 = np.empty((net.outputLength, batchSize)) y = np.empty((net.outputLength, batchSize)) g = net.activationFunction g_ = net.activationDerivative d2 = np.empty(a2.shape) d1 = np.empty(a1.shape) for epoch in range(epochs): # Create mini batches # TODO Shuffle samples # Iterate over batches for batchIndex in range(0, nbSamples, batchSize): # Capture batch batchEndIndex = batchIndex + batchSize a0 = np_images[:, batchIndex:batchEndIndex] y = np_expected[:, batchIndex:batchEndIndex] # Forward computation z1 = w1 @ a0 + b1 a1 = g(z1) z2 = w2 @ a1 + b2 a2 = g(z2) # Backward propagation d2 = a2 - y d1 = w2.transpose() @ d2 * g_(z1) # Weight correction net.layer2 -= learnRate * d2 @ a1.transpose() / batchSize net.layer1 -= learnRate * d1 @ a0.transpose() / batchSize net.bias2 -= learnRate * d2 @ np.ones(batchSize) / batchSize net.bias1 -= learnRate * d1 @ np.ones(batchSize) / batchSize return net