12345678910111213141516171819202122232425262728 |
- from mnist import MNIST
- import numpy as np
- def load_training_samples():
- """
- Return np_images, np_expected
- where
- np_impages is a np.array of 784 x 60 000
- np_expected is a np.array of 10 x 60 000
- """
- mndata = MNIST('../../resources/download')
- images = [[]]
- labels = []
- images, labels = mndata.load_training()
- np_images = np.array(images, dtype=np.float64)
-
- np_images /= 255
-
- np_expected = np.zeros((len(labels), 10))
- for k, label in enumerate(labels):
- np_expected[k][label] = 1.0
- return np.transpose(np_images), np.transpose(np_expected)
|