12345678910111213141516171819202122232425262728293031323334353637383940 |
- print("Start session")
- from scipy.special import expit
- import argparse
- from lab import generator, trainer, benchmark
- parser = argparse.ArgumentParser(description = "Start a training session for a neuronal network and display results.")
- parser.add_argument('--alpha', help = "set the learning rate", dest="learnRate", type = float, default = 0.05)
- parser.add_argument('--epochs', help = "set the number of iterations", dest="epochs", type = int, default = 2)
- args = parser.parse_args()
- print("Parameters")
- print("Learning rate : ", args.learnRate)
- print("Number of epochs : ", args.epochs)
- activation = expit
- activationDerivative = lambda x : expit(x) * (1 - expit(x))
- network = generator.generate(activation, activationDerivative, generator.gaussAdaptedDev)
- precisionBefore = benchmark.computePrecision(network)
- network = trainer.train(network, args.learnRate, args.epochs)
- precisionAfter = benchmark.computePrecision(network)
- print("Precision before training : ", precisionBefore)
- print("Precision after training : ", precisionAfter)
|