io_mnist.py 534 B

1234567891011121314151617181920212223
  1. from mnist import MNIST
  2. import numpy as np
  3. def load_training_samples():
  4. """
  5. Return np_images, labels
  6. where
  7. np_impages is a np.array of 60 000 x 784
  8. labels is a python list of expected answers
  9. """
  10. mndata = MNIST('../../resources/download')
  11. images = [[]] # Contains vectors of 784 pixels image
  12. labels = [] # Contains expected response for each image
  13. images, labels = mndata.load_training()
  14. np_images = np.array(images, dtype=np.float64)
  15. # Normalize data between 0.0 and 1.0
  16. np_images /= 255
  17. return np_images, labels