// Example of world building, display, and successor computation for the artificial // intelligence path-finding lab // // Author: Didier LIME // Adapted by : Jovian HERSEMEULE // Date: 2018-10-03 #include #include #include #include #include using namespace std; // Tile codes #define FREE 0 #define WALL 1 #define ORIGIN 2 #define TARGET 3 #define DISCOVERED 4 #define TRACE 5 unsigned int identifyTile(unsigned int y, unsigned int x, unsigned int l) { return y * l + x; } class World { private: // Number of columns unsigned int l; // Number of lines unsigned int h; // Size of the array const unsigned int size; // Unidimensional array for tiles int* board; public: // Constructor World(unsigned int l_, unsigned int h_, double p) :l(l_), h(h_), size(l_ * h_) { board = new int[size](); // Add walls to the first and last columns for (unsigned int i = 0; i < h; i++) { board[i * l] = WALL; board[i * l + l - 1] = WALL; } // Add walls to the first and last lines for (unsigned int j = 0; j < l; j++) { board[j] = WALL; board[(h - 1) * l + j] = WALL; } for (unsigned int i = 0; i < h; i++) { for (unsigned int j = 0; j < l; j++) { // add a wall in this tile with probability p and provided that it is neither // the starting tile nor the goal tile if ((double) rand() / RAND_MAX < p && !(i == 1 && j == 1) && !(i == h - 2 && j == l - 2)) { board[i * l + j] = WALL; } } } } // Display the world void display() { for (unsigned int i = 0; i < h; i++) { for (unsigned int j = 0; j < l; j++) { switch (board[identifyTile(i, j, l)]) { case FREE: cout << " "; break; case WALL: cout << "#"; break; case ORIGIN: cout << "o"; break; case TARGET: cout << "T"; break; case DISCOVERED: cout << "+"; break; case TRACE: cout << "*"; break; } } cout << endl; } } // compute the successors of tile number i in world w // we return the number n of valid successors // the actual list is in array r where only the first n // elements are significant unsigned int successors(unsigned int i, unsigned int r[4]) { unsigned int n = 0; if (i >= 0 && i < size && board[i] != WALL) { // if i is a correct tile number (inside the array and not on a wall) // look in the four adjacent tiles and keep only those with no wall const unsigned int moves[] = { i - 1, i + 1, i - l, i + l}; for (unsigned int k = 0; k < 4; k++) { if (board[moves[k]] != WALL) { r[n] = moves[k]; n++; } } } return n; } // Mark a list of points in the world void markAll(const list& path, int value = TRACE) { for (auto tile : path) { markOne(tile, value); } } // Mark a point in the world void markOne(unsigned int tile, int value = ORIGIN) { board[tile] = value; } // Depth-first search // starting from tile number s0, find a path to tile number t // return true if such a path exists, false otherwise // if it exists the path is given in variable path (hence the reference &) bool dfs(unsigned int s0, unsigned int target, list& path) { bool r = false; bool explored[size]; stack open; open.push(s0); for (unsigned int k(0); k < size; k ++) explored[k] = false; explored[s0] = true; int current; int neighbour; unsigned int succs[4]; unsigned int nbSuccs; do { current = open.top(); open.pop(); nbSuccs = successors(current, succs); for (unsigned int i(0); i < nbSuccs; i++) { neighbour = succs[i]; if (!explored[neighbour]) open.push(neighbour); } // Build path path.push_back(current); // Current tile is now processed explored[current] = true; // Stop if target found r = (current == target); } while (!r && !open.empty()); return r; } }; int main() { // Initialise the random number generator srand(time(0)); // Create a world const unsigned int l(20), h(10); const double wallProbability(0.2); World w(l, h, wallProbability); unsigned int start(identifyTile(1, 1, l)); unsigned int end(identifyTile(h - 2, l - 2, l)); // Display it cout << endl << "Generated world" << endl; w.markOne(start, ORIGIN); w.markOne(end, TARGET); w.display(); // Find a path with Depth-First Search list dfsPath; bool exitFound = w.dfs(start, end, dfsPath); // Display DFS cout << endl << "Depth-First Search" << endl; w.markAll(dfsPath); w.markOne(start, ORIGIN); w.markOne(end, TARGET); w.display(); // Display DFS result if (exitFound) cout << "SUCCESS !" << endl; else cout << "FAILURE ..." << endl; return 0; }