main.cc 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. // Example of world building, display, and successor computation for the artificial
  2. // intelligence path-finding lab
  3. //
  4. // Author: Didier LIME
  5. // Adapted by : Jovian HERSEMEULE
  6. // Date: 2018-10-03
  7. #include <iostream>
  8. #include <list>
  9. #include <cstdlib>
  10. #include <ctime>
  11. #include <stack>
  12. #include <queue>
  13. #include <unistd.h>
  14. using namespace std;
  15. // Default parameters
  16. #define DEFAULT_LENGTH 50
  17. #define DEFAULT_HEIGHT 15
  18. #define DEFAULT_PROBABILITY 0.2
  19. #define DEFAULT_ANIMATION true
  20. #define DEFAULT_ANIMATION_DELAY 50000 // us
  21. #define DEFAULT_COLOR_ENABLE true
  22. // Tile codes
  23. #define FREE 0
  24. #define WALL 1
  25. #define ORIGIN 2
  26. #define TARGET 3
  27. #define DISCOVERED 4
  28. #define TRACE 5
  29. unsigned int identifyTile(unsigned int y, unsigned int x, unsigned int l) {
  30. return y * l + x;
  31. }
  32. void moveCursorUp(const unsigned int& h) {
  33. cout << "\033[" << h << 'A';
  34. }
  35. class World
  36. {
  37. private:
  38. // Number of columns
  39. unsigned int l;
  40. // Number of lines
  41. unsigned int h;
  42. // Size of the array
  43. const unsigned int size;
  44. // Unidimensional array for tiles
  45. int* board;
  46. // Number of empty tiles
  47. unsigned int tileQuantity;
  48. public:
  49. // Constructor
  50. World(unsigned int l_, unsigned int h_, double p)
  51. :l(l_), h(h_), size(l_ * h_), tileQuantity(l_ * h_)
  52. {
  53. board = new int[size]();
  54. // Add walls to the first and last columns
  55. for (unsigned int i = 0; i < h; i++)
  56. {
  57. markOne(i * l, WALL);
  58. markOne(i * l + l - 1, WALL);
  59. }
  60. // Add walls to the first and last lines
  61. for (unsigned int j = 0; j < l; j++)
  62. {
  63. markOne(j, WALL);
  64. markOne((h - 1) * l + j, WALL);
  65. }
  66. for (unsigned int i = 0; i < h; i++)
  67. {
  68. for (unsigned int j = 0; j < l; j++)
  69. {
  70. // add a wall in this tile with probability p and provided that it is neither
  71. // the starting tile nor the goal tile
  72. if ((double) rand() / RAND_MAX < p && !(i == 1 && j == 1) && !(i == h - 2 && j == l - 2))
  73. markOne(i * l + j, WALL);
  74. }
  75. }
  76. }
  77. // Copy constructor
  78. World(const World& other)
  79. :l(other.l), h(other.h), size(other.size), tileQuantity(other.tileQuantity)
  80. {
  81. board = new int[size]();
  82. for (int k(0); k < size; k++) {
  83. board[k] = other.board[k];
  84. }
  85. }
  86. // Display the world
  87. void display()
  88. {
  89. for (unsigned int i = 0; i < h; i++)
  90. {
  91. for (unsigned int j = 0; j < l; j++)
  92. {
  93. switch (board[identifyTile(i, j, l)])
  94. {
  95. case FREE:
  96. cout << " ";
  97. break;
  98. case WALL:
  99. if (DEFAULT_COLOR_ENABLE) cout << "\033[0;43m";
  100. cout << "#";
  101. break;
  102. case ORIGIN:
  103. if (DEFAULT_COLOR_ENABLE) cout << "\033[1;33m";
  104. cout << "o";
  105. break;
  106. case TARGET:
  107. if (DEFAULT_COLOR_ENABLE) cout << "\033[1;33m";
  108. cout << "T";
  109. break;
  110. case DISCOVERED:
  111. if (DEFAULT_COLOR_ENABLE) cout << "\033[0;34m";
  112. cout << ":";
  113. break;
  114. case TRACE:
  115. if (DEFAULT_COLOR_ENABLE) {
  116. cout << "\033[0;32m";
  117. cout << "\033[1;42m";
  118. cout << ":";
  119. }
  120. else
  121. cout << "+";
  122. break;
  123. }
  124. if (DEFAULT_COLOR_ENABLE) cout << "\033[0;30m";
  125. }
  126. cout << endl;
  127. }
  128. }
  129. // compute the successors of tile number i in world w
  130. // we return the number n of valid successors
  131. // the actual list is in array r where only the first n
  132. // elements are significant
  133. unsigned int successors(unsigned int i, unsigned int r[4])
  134. {
  135. unsigned int n = 0;
  136. if (i >= 0 && i < size && board[i] != WALL)
  137. {
  138. // if i is a correct tile number (inside the array and not on a wall)
  139. // look in the four adjacent tiles and keep only those with no wall
  140. const unsigned int moves[] = { i - 1, i + 1, i - l, i + l};
  141. for (unsigned int k = 0; k < 4; k++)
  142. {
  143. if (board[moves[k]] != WALL)
  144. {
  145. r[n] = moves[k];
  146. n++;
  147. }
  148. }
  149. }
  150. return n;
  151. }
  152. // Mark a list of points in the world
  153. void markAll(const list<unsigned int>& path, int value = TRACE) {
  154. for (auto tile : path) {
  155. markOne(tile, value);
  156. }
  157. }
  158. // Mark a point in the world
  159. void markOne(unsigned int tile, int value = ORIGIN) {
  160. if (value == WALL && board[tile] != WALL)
  161. tileQuantity --;
  162. board[tile] = value;
  163. }
  164. // Depth-first search
  165. // starting from tile number origin, find a path to tile number t
  166. // return true if such a path exists, false otherwise
  167. // if it exists the path is given in variable path (hence the reference &)
  168. const bool dfs(unsigned int origin, unsigned int target, list<unsigned int>& path, list<unsigned int>& discovered)
  169. {
  170. bool targetIsReached = false;
  171. bool explored[size];
  172. unsigned int previous[size];
  173. for (unsigned int k(0); k < size; k ++) {
  174. explored[k] = false;
  175. previous[k] = k;
  176. }
  177. explored[origin] = true;
  178. stack<unsigned int> open;
  179. open.push(origin);
  180. int current;
  181. int neighbour;
  182. unsigned int succs[4];
  183. unsigned int nbSuccs;
  184. do {
  185. current = open.top();
  186. open.pop();
  187. nbSuccs = successors(current, succs);
  188. for (unsigned int i(0); i < nbSuccs; i++) {
  189. neighbour = succs[i];
  190. if (!explored[neighbour]) {
  191. open.push(neighbour);
  192. explored[neighbour] = true;
  193. previous[neighbour] = current;
  194. }
  195. }
  196. // Current tile is now processed
  197. discovered.push_back(current);
  198. // Stop if target found
  199. targetIsReached = (current == target);
  200. } while (!targetIsReached && !open.empty());
  201. // Remove origin and target
  202. if (!discovered.empty()) {
  203. discovered.remove(origin);
  204. discovered.remove(target);
  205. }
  206. // Build path
  207. if (targetIsReached) {
  208. do {
  209. path.push_back(current);
  210. current = previous[current];
  211. } while (current != origin);
  212. path.pop_front();
  213. }
  214. return targetIsReached;
  215. }
  216. // Breadth-first search
  217. // starting from tile number origin, find a path to tile number t
  218. // return true if such a path exists, false otherwise
  219. // if it exists the path is given in variable path (hence the reference &)
  220. const bool bfs(unsigned int origin, unsigned int target, list<unsigned int>& path, list<unsigned int>& discovered)
  221. {
  222. bool targetIsReached = false;
  223. bool explored[size];
  224. unsigned int previous[size];
  225. for (unsigned int k(0); k < size; k ++) {
  226. explored[k] = false;
  227. previous[k] = k;
  228. }
  229. explored[origin] = true;
  230. queue<unsigned int> open;
  231. open.push(origin);
  232. int current;
  233. int neighbour;
  234. unsigned int succs[4];
  235. unsigned int nbSuccs;
  236. do {
  237. current = open.front();
  238. open.pop();
  239. nbSuccs = successors(current, succs);
  240. for (unsigned int i(0); i < nbSuccs; i++) {
  241. neighbour = succs[i];
  242. if (!explored[neighbour]) {
  243. open.push(neighbour);
  244. explored[neighbour] = true;
  245. previous[neighbour] = current;
  246. }
  247. }
  248. // Current tile is now processed
  249. discovered.push_back(current);
  250. // Stop if target found
  251. targetIsReached = (current == target);
  252. } while (!targetIsReached && !open.empty());
  253. // Remove origin and target
  254. if (!discovered.empty()) {
  255. discovered.remove(origin);
  256. discovered.remove(target);
  257. }
  258. // Build path
  259. if (targetIsReached) {
  260. do {
  261. path.push_back(current);
  262. current = previous[current];
  263. } while (current != origin);
  264. path.pop_front();
  265. }
  266. return targetIsReached;
  267. }
  268. void animate(bool exitFound, const list<unsigned int>& discovered, const list<unsigned int>& path) {
  269. for (unsigned int tile : discovered) {
  270. markOne(tile, DISCOVERED);
  271. display();
  272. usleep(DEFAULT_ANIMATION_DELAY);
  273. moveCursorUp(h);
  274. }
  275. if (exitFound)
  276. for (unsigned int tile : path) {
  277. markOne(tile, TRACE);
  278. display();
  279. usleep(DEFAULT_ANIMATION_DELAY);
  280. moveCursorUp(h);
  281. }
  282. }
  283. void showResults(bool exitFound, const list<unsigned int>& discovered, const list<unsigned int>& path) {
  284. markAll(discovered, DISCOVERED);
  285. if (!path.empty()) {
  286. markAll(path, TRACE);
  287. }
  288. display();
  289. // Display DFS results
  290. if (exitFound)
  291. cout << "SUCCESS !" << endl;
  292. else
  293. cout << "FAILURE ..." << endl;
  294. const unsigned int discoveryRate(100 * discovered.size() / tileQuantity);
  295. cout << discovered.size() << " tiles discovered (" << discoveryRate << "%);" << endl;
  296. cout << path.size() << " path length." << endl;
  297. }
  298. void showProperties() {
  299. cout << "Length : " << l << endl;
  300. cout << "Height : " << h << endl;
  301. cout << "Number of floor tiles : " << tileQuantity << endl;
  302. }
  303. };
  304. int main()
  305. {
  306. // Initialise the random number generator
  307. srand(time(0));
  308. // Create a world
  309. const unsigned int l(DEFAULT_LENGTH), h(DEFAULT_HEIGHT);
  310. const double wallProbability(DEFAULT_PROBABILITY);
  311. World w(l, h, wallProbability);
  312. unsigned int start(identifyTile(1, 1, l));
  313. unsigned int end(identifyTile(h - 2, l - 2, l));
  314. // Display it
  315. cout << endl << "Generated world" << endl;
  316. w.showProperties();
  317. w.markOne(start, ORIGIN);
  318. w.markOne(end, TARGET);
  319. w.display();
  320. const bool animation(DEFAULT_ANIMATION);
  321. // 1
  322. cout << endl << "Depth-First Search" << endl;
  323. World dfsWorld(w);
  324. list<unsigned int> dfsPath;
  325. list<unsigned int> dfsDiscovered;
  326. bool dfsExitFound = dfsWorld.dfs(start, end, dfsPath, dfsDiscovered);
  327. if (animation)
  328. dfsWorld.animate(dfsExitFound, dfsDiscovered, dfsPath);
  329. dfsWorld.showResults(dfsExitFound, dfsDiscovered, dfsPath);
  330. // 2
  331. cout << endl << "Breadth-First Search" << endl;
  332. World bfsWorld(w);
  333. list<unsigned int> bfsPath;
  334. list<unsigned int> bfsDiscovered;
  335. bool bfsExitFound = bfsWorld.bfs(start, end, bfsPath, bfsDiscovered);
  336. if (animation)
  337. bfsWorld.animate(bfsExitFound, bfsDiscovered, bfsPath);
  338. bfsWorld.showResults(bfsExitFound, bfsDiscovered, bfsPath);
  339. // End
  340. return 0;
  341. }