main.cc 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. // Example of world building, display, and successor computation for the artificial
  2. // intelligence path-finding lab
  3. //
  4. // Author: Didier LIME
  5. // Adapted by : Jovian HERSEMEULE
  6. // Date: 2018-10-03
  7. #include <iostream>
  8. #include <list>
  9. #include <cstdlib>
  10. #include <ctime>
  11. #include <stack>
  12. using namespace std;
  13. // Tile codes
  14. #define FREE 0
  15. #define WALL 1
  16. #define ORIGIN 2
  17. #define TARGET 3
  18. #define DISCOVERED 4
  19. #define TRACE 5
  20. unsigned int identifyTile(unsigned int y, unsigned int x, unsigned int l) {
  21. return y * l + x;
  22. }
  23. class World
  24. {
  25. private:
  26. // Number of columns
  27. unsigned int l;
  28. // Number of lines
  29. unsigned int h;
  30. // Size of the array
  31. const unsigned int size;
  32. // Unidimensional array for tiles
  33. int* board;
  34. public:
  35. // Constructor
  36. World(unsigned int l_, unsigned int h_, double p)
  37. :l(l_), h(h_), size(l_ * h_)
  38. {
  39. board = new int[size]();
  40. // Add walls to the first and last columns
  41. for (unsigned int i = 0; i < h; i++)
  42. {
  43. board[i * l] = WALL;
  44. board[i * l + l - 1] = WALL;
  45. }
  46. // Add walls to the first and last lines
  47. for (unsigned int j = 0; j < l; j++)
  48. {
  49. board[j] = WALL;
  50. board[(h - 1) * l + j] = WALL;
  51. }
  52. for (unsigned int i = 0; i < h; i++)
  53. {
  54. for (unsigned int j = 0; j < l; j++)
  55. {
  56. // add a wall in this tile with probability p and provided that it is neither
  57. // the starting tile nor the goal tile
  58. if ((double) rand() / RAND_MAX < p && !(i == 1 && j == 1) && !(i == h - 2 && j == l - 2))
  59. {
  60. board[i * l + j] = WALL;
  61. }
  62. }
  63. }
  64. }
  65. // Display the world
  66. void display()
  67. {
  68. for (unsigned int i = 0; i < h; i++)
  69. {
  70. for (unsigned int j = 0; j < l; j++)
  71. {
  72. switch (board[identifyTile(i, j, l)])
  73. {
  74. case FREE:
  75. cout << " ";
  76. break;
  77. case WALL:
  78. cout << "#";
  79. break;
  80. case ORIGIN:
  81. cout << "o";
  82. break;
  83. case TARGET:
  84. cout << "T";
  85. break;
  86. case DISCOVERED:
  87. cout << "+";
  88. break;
  89. case TRACE:
  90. cout << "*";
  91. break;
  92. }
  93. }
  94. cout << endl;
  95. }
  96. }
  97. // compute the successors of tile number i in world w
  98. // we return the number n of valid successors
  99. // the actual list is in array r where only the first n
  100. // elements are significant
  101. unsigned int successors(unsigned int i, unsigned int r[4])
  102. {
  103. unsigned int n = 0;
  104. if (i >= 0 && i < size && board[i] != WALL)
  105. {
  106. // if i is a correct tile number (inside the array and not on a wall)
  107. // look in the four adjacent tiles and keep only those with no wall
  108. const unsigned int moves[] = { i - 1, i + 1, i - l, i + l};
  109. for (unsigned int k = 0; k < 4; k++)
  110. {
  111. if (board[moves[k]] != WALL)
  112. {
  113. r[n] = moves[k];
  114. n++;
  115. }
  116. }
  117. }
  118. return n;
  119. }
  120. // Mark a list of points in the world
  121. void markAll(const list<unsigned int>& path, int value = TRACE) {
  122. for (auto tile : path) {
  123. markOne(tile, value);
  124. }
  125. }
  126. // Mark a point in the world
  127. void markOne(unsigned int tile, int value = ORIGIN) {
  128. board[tile] = value;
  129. }
  130. // Depth-first search
  131. // starting from tile number s0, find a path to tile number t
  132. // return true if such a path exists, false otherwise
  133. // if it exists the path is given in variable path (hence the reference &)
  134. bool dfs(unsigned int s0, unsigned int t, list<unsigned int>& path)
  135. {
  136. bool r = false;
  137. bool explored[size];
  138. stack<unsigned int> open;
  139. open.push(s0);
  140. for (unsigned int k(0); k < size; k ++)
  141. explored[k] = false;
  142. explored[s0] = true;
  143. int current;
  144. int neighbour;
  145. unsigned int succs[4];
  146. unsigned int nbSuccs;
  147. do {
  148. current = open.top();
  149. open.pop();
  150. nbSuccs = successors(current, succs);
  151. for (unsigned int i(0); i < nbSuccs; i++) {
  152. neighbour = succs[i];
  153. if (!explored[neighbour])
  154. open.push(neighbour);
  155. }
  156. // Build path
  157. path.push_back(current);
  158. // Current tile is now processed
  159. explored[current] = true;
  160. } while (!r && !open.empty());
  161. return r;
  162. }
  163. };
  164. int main()
  165. {
  166. // Initialise the random number generator
  167. srand(time(0));
  168. // Create a world
  169. const unsigned int l(20), h(10);
  170. const double wallProbability(0.2);
  171. World w(l, h, wallProbability);
  172. unsigned int start(identifyTile(1, 1, l));
  173. unsigned int end(identifyTile(h - 2, l - 2, l));
  174. // Display it
  175. cout << endl << "Generated world" << endl;
  176. w.markOne(start, ORIGIN);
  177. w.markOne(end, TARGET);
  178. w.display();
  179. // Find a path with Depth-First Search
  180. list<unsigned int> dfsPath;
  181. bool exitFound = w.dfs(start, end, dfsPath);
  182. // Display DFS
  183. cout << endl << "Depth-First Search" << endl;
  184. w.markAll(dfsPath);
  185. w.display();
  186. return 0;
  187. }