Explorar o código

Import box2d required files

DricomDragon %!s(int64=4) %!d(string=hai) anos
pai
achega
bd88f54d2c
Modificáronse 2 ficheiros con 813 adicións e 0 borrados
  1. 98 0
      Maths/b2_math.cpp
  2. 715 0
      Maths/b2_math.h

+ 98 - 0
Maths/b2_math.cpp

@@ -0,0 +1,98 @@
+// MIT License
+
+// Copyright (c) 2019 Erin Catto
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#include "box2d/b2_math.h"
+
+const b2Vec2 b2Vec2_zero(0.0f, 0.0f);
+
+/// Solve A * x = b, where b is a column vector. This is more efficient
+/// than computing the inverse in one-shot cases.
+b2Vec3 b2Mat33::Solve33(const b2Vec3& b) const
+{
+	float det = b2Dot(ex, b2Cross(ey, ez));
+	if (det != 0.0f)
+	{
+		det = 1.0f / det;
+	}
+	b2Vec3 x;
+	x.x = det * b2Dot(b, b2Cross(ey, ez));
+	x.y = det * b2Dot(ex, b2Cross(b, ez));
+	x.z = det * b2Dot(ex, b2Cross(ey, b));
+	return x;
+}
+
+/// Solve A * x = b, where b is a column vector. This is more efficient
+/// than computing the inverse in one-shot cases.
+b2Vec2 b2Mat33::Solve22(const b2Vec2& b) const
+{
+	float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
+	float det = a11 * a22 - a12 * a21;
+	if (det != 0.0f)
+	{
+		det = 1.0f / det;
+	}
+	b2Vec2 x;
+	x.x = det * (a22 * b.x - a12 * b.y);
+	x.y = det * (a11 * b.y - a21 * b.x);
+	return x;
+}
+
+///
+void b2Mat33::GetInverse22(b2Mat33* M) const
+{
+	float a = ex.x, b = ey.x, c = ex.y, d = ey.y;
+	float det = a * d - b * c;
+	if (det != 0.0f)
+	{
+		det = 1.0f / det;
+	}
+
+	M->ex.x =  det * d;	M->ey.x = -det * b; M->ex.z = 0.0f;
+	M->ex.y = -det * c;	M->ey.y =  det * a; M->ey.z = 0.0f;
+	M->ez.x = 0.0f; M->ez.y = 0.0f; M->ez.z = 0.0f;
+}
+
+/// Returns the zero matrix if singular.
+void b2Mat33::GetSymInverse33(b2Mat33* M) const
+{
+	float det = b2Dot(ex, b2Cross(ey, ez));
+	if (det != 0.0f)
+	{
+		det = 1.0f / det;
+	}
+
+	float a11 = ex.x, a12 = ey.x, a13 = ez.x;
+	float a22 = ey.y, a23 = ez.y;
+	float a33 = ez.z;
+
+	M->ex.x = det * (a22 * a33 - a23 * a23);
+	M->ex.y = det * (a13 * a23 - a12 * a33);
+	M->ex.z = det * (a12 * a23 - a13 * a22);
+
+	M->ey.x = M->ex.y;
+	M->ey.y = det * (a11 * a33 - a13 * a13);
+	M->ey.z = det * (a13 * a12 - a11 * a23);
+
+	M->ez.x = M->ex.z;
+	M->ez.y = M->ey.z;
+	M->ez.z = det * (a11 * a22 - a12 * a12);
+}

+ 715 - 0
Maths/b2_math.h

@@ -0,0 +1,715 @@
+// MIT License
+
+// Copyright (c) 2019 Erin Catto
+
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef B2_MATH_H
+#define B2_MATH_H
+
+#include <math.h>
+
+#include "b2_api.h"
+#include "b2_settings.h"
+
+/// This function is used to ensure that a floating point number is not a NaN or infinity.
+inline bool b2IsValid(float x)
+{
+	return isfinite(x);
+}
+
+#define	b2Sqrt(x)	sqrtf(x)
+#define	b2Atan2(y, x)	atan2f(y, x)
+
+/// A 2D column vector.
+struct B2_API b2Vec2
+{
+	/// Default constructor does nothing (for performance).
+	b2Vec2() {}
+
+	/// Construct using coordinates.
+	b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {}
+
+	/// Set this vector to all zeros.
+	void SetZero() { x = 0.0f; y = 0.0f; }
+
+	/// Set this vector to some specified coordinates.
+	void Set(float x_, float y_) { x = x_; y = y_; }
+
+	/// Negate this vector.
+	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
+
+	/// Read from and indexed element.
+	float operator () (int32 i) const
+	{
+		return (&x)[i];
+	}
+
+	/// Write to an indexed element.
+	float& operator () (int32 i)
+	{
+		return (&x)[i];
+	}
+
+	/// Add a vector to this vector.
+	void operator += (const b2Vec2& v)
+	{
+		x += v.x; y += v.y;
+	}
+
+	/// Subtract a vector from this vector.
+	void operator -= (const b2Vec2& v)
+	{
+		x -= v.x; y -= v.y;
+	}
+
+	/// Multiply this vector by a scalar.
+	void operator *= (float a)
+	{
+		x *= a; y *= a;
+	}
+
+	/// Get the length of this vector (the norm).
+	float Length() const
+	{
+		return b2Sqrt(x * x + y * y);
+	}
+
+	/// Get the length squared. For performance, use this instead of
+	/// b2Vec2::Length (if possible).
+	float LengthSquared() const
+	{
+		return x * x + y * y;
+	}
+
+	/// Convert this vector into a unit vector. Returns the length.
+	float Normalize()
+	{
+		float length = Length();
+		if (length < b2_epsilon)
+		{
+			return 0.0f;
+		}
+		float invLength = 1.0f / length;
+		x *= invLength;
+		y *= invLength;
+
+		return length;
+	}
+
+	/// Does this vector contain finite coordinates?
+	bool IsValid() const
+	{
+		return b2IsValid(x) && b2IsValid(y);
+	}
+
+	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
+	b2Vec2 Skew() const
+	{
+		return b2Vec2(-y, x);
+	}
+
+	float x, y;
+};
+
+/// A 2D column vector with 3 elements.
+struct B2_API b2Vec3
+{
+	/// Default constructor does nothing (for performance).
+	b2Vec3() {}
+
+	/// Construct using coordinates.
+	b2Vec3(float xIn, float yIn, float zIn) : x(xIn), y(yIn), z(zIn) {}
+
+	/// Set this vector to all zeros.
+	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; }
+
+	/// Set this vector to some specified coordinates.
+	void Set(float x_, float y_, float z_) { x = x_; y = y_; z = z_; }
+
+	/// Negate this vector.
+	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; }
+
+	/// Add a vector to this vector.
+	void operator += (const b2Vec3& v)
+	{
+		x += v.x; y += v.y; z += v.z;
+	}
+
+	/// Subtract a vector from this vector.
+	void operator -= (const b2Vec3& v)
+	{
+		x -= v.x; y -= v.y; z -= v.z;
+	}
+
+	/// Multiply this vector by a scalar.
+	void operator *= (float s)
+	{
+		x *= s; y *= s; z *= s;
+	}
+
+	float x, y, z;
+};
+
+/// A 2-by-2 matrix. Stored in column-major order.
+struct B2_API b2Mat22
+{
+	/// The default constructor does nothing (for performance).
+	b2Mat22() {}
+
+	/// Construct this matrix using columns.
+	b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
+	{
+		ex = c1;
+		ey = c2;
+	}
+
+	/// Construct this matrix using scalars.
+	b2Mat22(float a11, float a12, float a21, float a22)
+	{
+		ex.x = a11; ex.y = a21;
+		ey.x = a12; ey.y = a22;
+	}
+
+	/// Initialize this matrix using columns.
+	void Set(const b2Vec2& c1, const b2Vec2& c2)
+	{
+		ex = c1;
+		ey = c2;
+	}
+
+	/// Set this to the identity matrix.
+	void SetIdentity()
+	{
+		ex.x = 1.0f; ey.x = 0.0f;
+		ex.y = 0.0f; ey.y = 1.0f;
+	}
+
+	/// Set this matrix to all zeros.
+	void SetZero()
+	{
+		ex.x = 0.0f; ey.x = 0.0f;
+		ex.y = 0.0f; ey.y = 0.0f;
+	}
+
+	b2Mat22 GetInverse() const
+	{
+		float a = ex.x, b = ey.x, c = ex.y, d = ey.y;
+		b2Mat22 B;
+		float det = a * d - b * c;
+		if (det != 0.0f)
+		{
+			det = 1.0f / det;
+		}
+		B.ex.x =  det * d;	B.ey.x = -det * b;
+		B.ex.y = -det * c;	B.ey.y =  det * a;
+		return B;
+	}
+
+	/// Solve A * x = b, where b is a column vector. This is more efficient
+	/// than computing the inverse in one-shot cases.
+	b2Vec2 Solve(const b2Vec2& b) const
+	{
+		float a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y;
+		float det = a11 * a22 - a12 * a21;
+		if (det != 0.0f)
+		{
+			det = 1.0f / det;
+		}
+		b2Vec2 x;
+		x.x = det * (a22 * b.x - a12 * b.y);
+		x.y = det * (a11 * b.y - a21 * b.x);
+		return x;
+	}
+
+	b2Vec2 ex, ey;
+};
+
+/// A 3-by-3 matrix. Stored in column-major order.
+struct B2_API b2Mat33
+{
+	/// The default constructor does nothing (for performance).
+	b2Mat33() {}
+
+	/// Construct this matrix using columns.
+	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3)
+	{
+		ex = c1;
+		ey = c2;
+		ez = c3;
+	}
+
+	/// Set this matrix to all zeros.
+	void SetZero()
+	{
+		ex.SetZero();
+		ey.SetZero();
+		ez.SetZero();
+	}
+
+	/// Solve A * x = b, where b is a column vector. This is more efficient
+	/// than computing the inverse in one-shot cases.
+	b2Vec3 Solve33(const b2Vec3& b) const;
+
+	/// Solve A * x = b, where b is a column vector. This is more efficient
+	/// than computing the inverse in one-shot cases. Solve only the upper
+	/// 2-by-2 matrix equation.
+	b2Vec2 Solve22(const b2Vec2& b) const;
+
+	/// Get the inverse of this matrix as a 2-by-2.
+	/// Returns the zero matrix if singular.
+	void GetInverse22(b2Mat33* M) const;
+
+	/// Get the symmetric inverse of this matrix as a 3-by-3.
+	/// Returns the zero matrix if singular.
+	void GetSymInverse33(b2Mat33* M) const;
+
+	b2Vec3 ex, ey, ez;
+};
+
+/// Rotation
+struct B2_API b2Rot
+{
+	b2Rot() {}
+
+	/// Initialize from an angle in radians
+	explicit b2Rot(float angle)
+	{
+		/// TODO_ERIN optimize
+		s = sinf(angle);
+		c = cosf(angle);
+	}
+
+	/// Set using an angle in radians.
+	void Set(float angle)
+	{
+		/// TODO_ERIN optimize
+		s = sinf(angle);
+		c = cosf(angle);
+	}
+
+	/// Set to the identity rotation
+	void SetIdentity()
+	{
+		s = 0.0f;
+		c = 1.0f;
+	}
+
+	/// Get the angle in radians
+	float GetAngle() const
+	{
+		return b2Atan2(s, c);
+	}
+
+	/// Get the x-axis
+	b2Vec2 GetXAxis() const
+	{
+		return b2Vec2(c, s);
+	}
+
+	/// Get the u-axis
+	b2Vec2 GetYAxis() const
+	{
+		return b2Vec2(-s, c);
+	}
+
+	/// Sine and cosine
+	float s, c;
+};
+
+/// A transform contains translation and rotation. It is used to represent
+/// the position and orientation of rigid frames.
+struct B2_API b2Transform
+{
+	/// The default constructor does nothing.
+	b2Transform() {}
+
+	/// Initialize using a position vector and a rotation.
+	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {}
+
+	/// Set this to the identity transform.
+	void SetIdentity()
+	{
+		p.SetZero();
+		q.SetIdentity();
+	}
+
+	/// Set this based on the position and angle.
+	void Set(const b2Vec2& position, float angle)
+	{
+		p = position;
+		q.Set(angle);
+	}
+
+	b2Vec2 p;
+	b2Rot q;
+};
+
+/// This describes the motion of a body/shape for TOI computation.
+/// Shapes are defined with respect to the body origin, which may
+/// no coincide with the center of mass. However, to support dynamics
+/// we must interpolate the center of mass position.
+struct B2_API b2Sweep
+{
+	/// Get the interpolated transform at a specific time.
+	/// @param transform the output transform
+	/// @param beta is a factor in [0,1], where 0 indicates alpha0.
+	void GetTransform(b2Transform* transform, float beta) const;
+
+	/// Advance the sweep forward, yielding a new initial state.
+	/// @param alpha the new initial time.
+	void Advance(float alpha);
+
+	/// Normalize the angles.
+	void Normalize();
+
+	b2Vec2 localCenter;	///< local center of mass position
+	b2Vec2 c0, c;		///< center world positions
+	float a0, a;		///< world angles
+
+	/// Fraction of the current time step in the range [0,1]
+	/// c0 and a0 are the positions at alpha0.
+	float alpha0;
+};
+
+/// Useful constant
+extern B2_API const b2Vec2 b2Vec2_zero;
+
+/// Perform the dot product on two vectors.
+inline float b2Dot(const b2Vec2& a, const b2Vec2& b)
+{
+	return a.x * b.x + a.y * b.y;
+}
+
+/// Perform the cross product on two vectors. In 2D this produces a scalar.
+inline float b2Cross(const b2Vec2& a, const b2Vec2& b)
+{
+	return a.x * b.y - a.y * b.x;
+}
+
+/// Perform the cross product on a vector and a scalar. In 2D this produces
+/// a vector.
+inline b2Vec2 b2Cross(const b2Vec2& a, float s)
+{
+	return b2Vec2(s * a.y, -s * a.x);
+}
+
+/// Perform the cross product on a scalar and a vector. In 2D this produces
+/// a vector.
+inline b2Vec2 b2Cross(float s, const b2Vec2& a)
+{
+	return b2Vec2(-s * a.y, s * a.x);
+}
+
+/// Multiply a matrix times a vector. If a rotation matrix is provided,
+/// then this transforms the vector from one frame to another.
+inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
+{
+	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
+}
+
+/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
+/// then this transforms the vector from one frame to another (inverse transform).
+inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
+{
+	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey));
+}
+
+/// Add two vectors component-wise.
+inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
+{
+	return b2Vec2(a.x + b.x, a.y + b.y);
+}
+
+/// Subtract two vectors component-wise.
+inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
+{
+	return b2Vec2(a.x - b.x, a.y - b.y);
+}
+
+inline b2Vec2 operator * (float s, const b2Vec2& a)
+{
+	return b2Vec2(s * a.x, s * a.y);
+}
+
+inline bool operator == (const b2Vec2& a, const b2Vec2& b)
+{
+	return a.x == b.x && a.y == b.y;
+}
+
+inline bool operator != (const b2Vec2& a, const b2Vec2& b)
+{
+	return a.x != b.x || a.y != b.y;
+}
+
+inline float b2Distance(const b2Vec2& a, const b2Vec2& b)
+{
+	b2Vec2 c = a - b;
+	return c.Length();
+}
+
+inline float b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
+{
+	b2Vec2 c = a - b;
+	return b2Dot(c, c);
+}
+
+inline b2Vec3 operator * (float s, const b2Vec3& a)
+{
+	return b2Vec3(s * a.x, s * a.y, s * a.z);
+}
+
+/// Add two vectors component-wise.
+inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b)
+{
+	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z);
+}
+
+/// Subtract two vectors component-wise.
+inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b)
+{
+	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z);
+}
+
+/// Perform the dot product on two vectors.
+inline float b2Dot(const b2Vec3& a, const b2Vec3& b)
+{
+	return a.x * b.x + a.y * b.y + a.z * b.z;
+}
+
+/// Perform the cross product on two vectors.
+inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b)
+{
+	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
+}
+
+inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
+{
+	return b2Mat22(A.ex + B.ex, A.ey + B.ey);
+}
+
+// A * B
+inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
+{
+	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey));
+}
+
+// A^T * B
+inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
+{
+	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex));
+	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey));
+	return b2Mat22(c1, c2);
+}
+
+/// Multiply a matrix times a vector.
+inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v)
+{
+	return v.x * A.ex + v.y * A.ey + v.z * A.ez;
+}
+
+/// Multiply a matrix times a vector.
+inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v)
+{
+	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y);
+}
+
+/// Multiply two rotations: q * r
+inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r)
+{
+	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
+	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
+	// s = qs * rc + qc * rs
+	// c = qc * rc - qs * rs
+	b2Rot qr;
+	qr.s = q.s * r.c + q.c * r.s;
+	qr.c = q.c * r.c - q.s * r.s;
+	return qr;
+}
+
+/// Transpose multiply two rotations: qT * r
+inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r)
+{
+	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
+	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
+	// s = qc * rs - qs * rc
+	// c = qc * rc + qs * rs
+	b2Rot qr;
+	qr.s = q.c * r.s - q.s * r.c;
+	qr.c = q.c * r.c + q.s * r.s;
+	return qr;
+}
+
+/// Rotate a vector
+inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v)
+{
+	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y);
+}
+
+/// Inverse rotate a vector
+inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v)
+{
+	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y);
+}
+
+inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v)
+{
+	float x = (T.q.c * v.x - T.q.s * v.y) + T.p.x;
+	float y = (T.q.s * v.x + T.q.c * v.y) + T.p.y;
+
+	return b2Vec2(x, y);
+}
+
+inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v)
+{
+	float px = v.x - T.p.x;
+	float py = v.y - T.p.y;
+	float x = (T.q.c * px + T.q.s * py);
+	float y = (-T.q.s * px + T.q.c * py);
+
+	return b2Vec2(x, y);
+}
+
+// v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
+//    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
+inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B)
+{
+	b2Transform C;
+	C.q = b2Mul(A.q, B.q);
+	C.p = b2Mul(A.q, B.p) + A.p;
+	return C;
+}
+
+// v2 = A.q' * (B.q * v1 + B.p - A.p)
+//    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
+inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B)
+{
+	b2Transform C;
+	C.q = b2MulT(A.q, B.q);
+	C.p = b2MulT(A.q, B.p - A.p);
+	return C;
+}
+
+template <typename T>
+inline T b2Abs(T a)
+{
+	return a > T(0) ? a : -a;
+}
+
+inline b2Vec2 b2Abs(const b2Vec2& a)
+{
+	return b2Vec2(b2Abs(a.x), b2Abs(a.y));
+}
+
+inline b2Mat22 b2Abs(const b2Mat22& A)
+{
+	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey));
+}
+
+template <typename T>
+inline T b2Min(T a, T b)
+{
+	return a < b ? a : b;
+}
+
+inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
+{
+	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));
+}
+
+template <typename T>
+inline T b2Max(T a, T b)
+{
+	return a > b ? a : b;
+}
+
+inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
+{
+	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));
+}
+
+template <typename T>
+inline T b2Clamp(T a, T low, T high)
+{
+	return b2Max(low, b2Min(a, high));
+}
+
+inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
+{
+	return b2Max(low, b2Min(a, high));
+}
+
+template<typename T> inline void b2Swap(T& a, T& b)
+{
+	T tmp = a;
+	a = b;
+	b = tmp;
+}
+
+/// "Next Largest Power of 2
+/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
+/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
+/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
+/// largest power of 2. For a 32-bit value:"
+inline uint32 b2NextPowerOfTwo(uint32 x)
+{
+	x |= (x >> 1);
+	x |= (x >> 2);
+	x |= (x >> 4);
+	x |= (x >> 8);
+	x |= (x >> 16);
+	return x + 1;
+}
+
+inline bool b2IsPowerOfTwo(uint32 x)
+{
+	bool result = x > 0 && (x & (x - 1)) == 0;
+	return result;
+}
+
+// https://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
+inline void b2Sweep::GetTransform(b2Transform* xf, float beta) const
+{
+	xf->p = (1.0f - beta) * c0 + beta * c;
+	float angle = (1.0f - beta) * a0 + beta * a;
+	xf->q.Set(angle);
+
+	// Shift to origin
+	xf->p -= b2Mul(xf->q, localCenter);
+}
+
+inline void b2Sweep::Advance(float alpha)
+{
+	b2Assert(alpha0 < 1.0f);
+	float beta = (alpha - alpha0) / (1.0f - alpha0);
+	c0 += beta * (c - c0);
+	a0 += beta * (a - a0);
+	alpha0 = alpha;
+}
+
+/// Normalize an angle in radians to be between -pi and pi
+inline void b2Sweep::Normalize()
+{
+	float twoPi = 2.0f * b2_pi;
+	float d =  twoPi * floorf(a0 / twoPi);
+	a0 -= d;
+	a -= d;
+}
+
+#endif