// MIT License // Copyright (c) 2019 Erin Catto // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #ifndef B2_MATH_H #define B2_MATH_H #include /// This function is used to ensure that a floating point number is not a NaN or infinity. inline bool b2IsValid(float x) { return isfinite(x); } #define b2Sqrt(x) sqrtf(x) #define b2Atan2(y, x) atan2f(y, x) /// A 2D column vector. struct b2Vec2 { /// Default constructor does nothing (for performance). b2Vec2() {} /// Construct using coordinates. b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {} /// Set this vector to all zeros. void SetZero() { x = 0.0f; y = 0.0f; } /// Set this vector to some specified coordinates. void Set(float x_, float y_) { x = x_; y = y_; } /// Negate this vector. b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } /// Read from and indexed element. float operator () (int i) const { return (&x)[i]; } /// Write to an indexed element. float& operator () (int i) { return (&x)[i]; } /// Add a vector to this vector. void operator += (const b2Vec2& v) { x += v.x; y += v.y; } /// Subtract a vector from this vector. void operator -= (const b2Vec2& v) { x -= v.x; y -= v.y; } /// Multiply this vector by a scalar. void operator *= (float a) { x *= a; y *= a; } /// Get the length of this vector (the norm). float Length() const { return b2Sqrt(x * x + y * y); } /// Get the length squared. For performance, use this instead of /// b2Vec2::Length (if possible). float LengthSquared() const { return x * x + y * y; } /// Convert this vector into a unit vector. Returns the length. float Normalize() { float length = Length(); if (length < __FLT_EPSILON__) { return 0.0f; } float invLength = 1.0f / length; x *= invLength; y *= invLength; return length; } /// Does this vector contain finite coordinates? bool IsValid() const { return b2IsValid(x) && b2IsValid(y); } /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other) b2Vec2 Skew() const { return b2Vec2(-y, x); } float x, y; }; /// Add two vectors component-wise. inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) { return b2Vec2(a.x + b.x, a.y + b.y); } /// Subtract two vectors component-wise. inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) { return b2Vec2(a.x - b.x, a.y - b.y); } inline b2Vec2 operator * (float s, const b2Vec2& a) { return b2Vec2(s * a.x, s * a.y); } inline bool operator == (const b2Vec2& a, const b2Vec2& b) { return a.x == b.x && a.y == b.y; } inline bool operator != (const b2Vec2& a, const b2Vec2& b) { return a.x != b.x || a.y != b.y; } inline float b2Distance(const b2Vec2& a, const b2Vec2& b) { b2Vec2 c = a - b; return c.Length(); } /// Perform the cross product on two vectors. In 2D this produces a scalar. inline float b2Cross(const b2Vec2& a, const b2Vec2& b) { return a.x * b.y - a.y * b.x; } /// Perform the dot product on two vectors. inline float b2Dot(const b2Vec2& a, const b2Vec2& b) { return a.x * b.x + a.y * b.y; } #endif