123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- // MIT License
- // Copyright (c) 2019 Erin Catto
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- #ifndef B2_MATH_H
- #define B2_MATH_H
- #include <math.h>
- /// This function is used to ensure that a floating point number is not a NaN or infinity.
- inline bool b2IsValid(float x)
- {
- return isfinite(x);
- }
- #define b2Sqrt(x) sqrtf(x)
- #define b2Atan2(y, x) atan2f(y, x)
- /// A 2D column vector.
- struct b2Vec2
- {
- /// Default constructor does nothing (for performance).
- b2Vec2() {}
- /// Construct using coordinates.
- b2Vec2(float xIn, float yIn) : x(xIn), y(yIn) {}
- /// Set this vector to all zeros.
- void SetZero() { x = 0.0f; y = 0.0f; }
- /// Set this vector to some specified coordinates.
- void Set(float x_, float y_) { x = x_; y = y_; }
- /// Negate this vector.
- b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
- /// Read from and indexed element.
- float operator () (int i) const
- {
- return (&x)[i];
- }
- /// Write to an indexed element.
- float& operator () (int i)
- {
- return (&x)[i];
- }
- /// Add a vector to this vector.
- void operator += (const b2Vec2& v)
- {
- x += v.x; y += v.y;
- }
- /// Subtract a vector from this vector.
- void operator -= (const b2Vec2& v)
- {
- x -= v.x; y -= v.y;
- }
- /// Multiply this vector by a scalar.
- void operator *= (float a)
- {
- x *= a; y *= a;
- }
- /// Get the length of this vector (the norm).
- float Length() const
- {
- return b2Sqrt(x * x + y * y);
- }
- /// Get the length squared. For performance, use this instead of
- /// b2Vec2::Length (if possible).
- float LengthSquared() const
- {
- return x * x + y * y;
- }
- /// Convert this vector into a unit vector. Returns the length.
- float Normalize()
- {
- float length = Length();
- if (length < __FLT_EPSILON__)
- {
- return 0.0f;
- }
- float invLength = 1.0f / length;
- x *= invLength;
- y *= invLength;
- return length;
- }
- /// Does this vector contain finite coordinates?
- bool IsValid() const
- {
- return b2IsValid(x) && b2IsValid(y);
- }
- /// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
- b2Vec2 Skew() const
- {
- return b2Vec2(-y, x);
- }
- float x, y;
- };
- /// Add two vectors component-wise.
- inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
- {
- return b2Vec2(a.x + b.x, a.y + b.y);
- }
- /// Subtract two vectors component-wise.
- inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
- {
- return b2Vec2(a.x - b.x, a.y - b.y);
- }
- inline b2Vec2 operator * (float s, const b2Vec2& a)
- {
- return b2Vec2(s * a.x, s * a.y);
- }
- inline bool operator == (const b2Vec2& a, const b2Vec2& b)
- {
- return a.x == b.x && a.y == b.y;
- }
- inline bool operator != (const b2Vec2& a, const b2Vec2& b)
- {
- return a.x != b.x || a.y != b.y;
- }
- inline float b2Distance(const b2Vec2& a, const b2Vec2& b)
- {
- b2Vec2 c = a - b;
- return c.Length();
- }
- /// Perform the cross product on two vectors. In 2D this produces a scalar.
- inline float b2Cross(const b2Vec2& a, const b2Vec2& b)
- {
- return a.x * b.y - a.y * b.x;
- }
- /// Perform the dot product on two vectors.
- inline float b2Dot(const b2Vec2& a, const b2Vec2& b)
- {
- return a.x * b.x + a.y * b.y;
- }
- #endif
|